Low-overhead Communications in IoT Networks von Yuanming Shi

Structured Signal Processing Approaches
CHF 134.00 inkl. MwSt.
ISBN: 978-981-1538-69-8
Einband: Fester Einband
Verfügbarkeit: in der Regel innert 15 Werktagen lieferbar. Abweichungen werden nach Bestelleingang per Mail gemeldet.
+ -

The recent developments in wireless communications, networking, and embedded systems have driven various innovative Internet of Things (IoT) applications, e.g., smart cities, mobile healthcare, autonomous driving and drones. A common feature of these applications is the stringent requirements for low-latency communications. Considering the typical small payload size of IoT applications, it is of critical importance to reduce the size of the overhead message, e.g., identification information, pilot symbols for channel estimation, and control data. Such low-overhead communications also help to improve the energy efficiency of IoT devices. Recently, structured signal processing techniques have been introduced and developed to reduce the overheads for key design problems in IoT networks, such as channel estimation, device identification, and message decoding. By utilizing underlying system structures, including sparsity and low rank, these methods can achieve significant performance gains. This book provides an overview of four general structured signal processing models: a sparse linear model, a blind demixing model, a sparse blind demixing model, and a shuffled linear model, and discusses their applications in enabling low-overhead communications in IoT networks. Further, it presents practical algorithms based on both convex and nonconvex optimization approaches, as well as theoretical analyses that use various mathematical tools.

The recent developments in wireless communications, networking, and embedded systems have driven various innovative Internet of Things (IoT) applications, e.g., smart cities, mobile healthcare, autonomous driving and drones. A common feature of these applications is the stringent requirements for low-latency communications. Considering the typical small payload size of IoT applications, it is of critical importance to reduce the size of the overhead message, e.g., identification information, pilot symbols for channel estimation, and control data. Such low-overhead communications also help to improve the energy efficiency of IoT devices. Recently, structured signal processing techniques have been introduced and developed to reduce the overheads for key design problems in IoT networks, such as channel estimation, device identification, and message decoding. By utilizing underlying system structures, including sparsity and low rank, these methods can achieve significant performance gains. This book provides an overview of four general structured signal processing models: a sparse linear model, a blind demixing model, a sparse blind demixing model, and a shuffled linear model, and discusses their applications in enabling low-overhead communications in IoT networks. Further, it presents practical algorithms based on both convex and nonconvex optimization approaches, as well as theoretical analyses that use various mathematical tools.

AutorShi, Yuanming / Zhang, Jun / Dong, Jialin
EinbandFester Einband
Erscheinungsjahr2020
Seitenangabe168 S.
LieferstatusFolgt in ca. 15 Arbeitstagen
AusgabekennzeichenEnglisch
AbbildungenHC runder Rücken kaschiert
MasseH24.1 cm x B16.0 cm x D1.5 cm 424 g
Auflage1st ed. 2020
VerlagSpringer Nature Singapore

Über den Autor Yuanming Shi

Yuanming Shi received the B.S. degree in electronic engineering from Tsinghua University, Beijing, China, in 2011. He received the Ph.D. degree in electronic and computer engineering from The Hong Kong University of Science and Technology (HKUST), in 2015. Since September 2015, he has been with the School of Information Science and Technology in ShanghaiTech University, where he is currently a tenured Associate Professor. He visited University of California, Berkeley, CA, USA, from October 2016 to February 2017. His research areas include optimization, machine learning, wireless communications, and their applications to 6G, IoT, and edge AI. He was a recipient of the 2016 IEEE Marconi Prize Paper Award in Wireless Communications, the 2016 Young Author Best Paper Award by the IEEE Signal Processing Society, and the 2021 IEEE ComSoc Asia-Pacific Outstanding Young Researcher Award. He is also an editor of IEEE Transactions on Wireless Communications, IEEE Journal on Selected Areas in Communications, and Journal of Communications and Information Networks.Mr. Kai Yang is currently at JD.com, Inc., China. His research interests include big data processing, mobile edge/fog computing, mobile edge artificial intelligence and dense communication networking. He has developed a wireless distributed computing framework for edge inference, and an over-the-air computation approach for edge federated machine learning.Mr. Zhanpeng Yang is shortly to join the School of Information Science and Technology, ShanghaiTech University. He mainly focuses on developing reconfigurable intelligence surface based 6G wireless technologies for mobile edge AI systems.Yong Zhou received the B.Sc. and M.Eng. degrees from Shandong University, Jinan, China, in 2008 and 2011, respectively, and the Ph.D. degree from the University of Waterloo, Waterloo, ON, Canada, in 2015. From Nov. 2015 to Jan. 2018, he worked as a postdoctoral research fellow in the Department of Electrical and Computer Engineering, The University of British Columbia, Vancouver, Canada. He is currently an Assistant Professor in the School of Information Science and Technology, ShanghaiTech University, Shanghai, China. He was the track co-chair of IEEE VTC 2020 Fall and 2023 Spring, as well as the general co-chair of IEEE ICC 2022 workshop on edge artificial intelligence for 6G. He co-authored the book Mobile Edge Artificial Intelligence: Opportunities and Challenges (Elsevier 2021). His research interests include 6G communications, edge intelligence, and Internet of Things.

Weitere Titel von Yuanming Shi